
Comparison of Vendor Supplied Environmental
Data Collection Mechanisms
Sean	Wallace*,	Venkatram	Vishwanath+,	Susan	Coghlan+,	Zhiling	Lan*,		
Michael	E.	Papka+#	

*Illinois	InsAtute	of	Technology,	Chicago,	IL,	USA	
+Argonne	NaAonal	Laboratory,	Argonne,	IL,	USA	
#Northern	Illinois	University,	DeKalb,	IL,	USA	

swallac6@iit.edu

mailto:swallac6@iit.edu

Motivation
¤ Systems becoming larger and more complex.

¥ Makes it more difficult to get accurate picture of what “environmental”
aspects (e.g., motherboard, CPU, GPU, hard disk and other peripherals
temperature, voltage, current, fan speed, etc.) are like.

¥ Putting accurate sensors in hardware is expensive, therefore hardware
manufacturers do so sparingly and where only necessary.

¤ Lack of tools available to access and interpret environmental data
across variety of systems.
¥ Data like power consumption, temperature, etc. are some metrics which

are largely not understood at system level.
¤ This data can be very useful!

¥ Previous studies [1] showed possibility of electricity bill savings up to
23%.

2

[1] X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan, and M. E. Papka, “Integrating dynamic
pricing of electricity into energy aware scheduling for HPC systems,” in Proceedings of SC13:
International Conference for High Performance Computing, Networking, Storage and Analysis, ser. SC
’13. New York, NY, USA: ACM, 2013, pp. 60:1–60:11. [Online]. Available: http://doi.acm.org/
10.1145/2503210.2503264

http://doi.acm.org/10.1145/2503210.2503264

Outline
¤ Discussion and analysis of obtainable data from four major hardware

platforms:
¥ IBM Blue Gene/Q
¥ Intel RAPL,
¥ NVIDIA GPUs
¥ Intel Xeon Phi

¤ With each:
¥ How to collect data
¥ How reliable data are
¥ What frequency data can be obtained
¥ Examples of data for benchmarks.

¤ MonEQ explanation and “how-to”

3

Vendor Supplied APIs
¤ Environmental analysis would not be possible without sensors in

hardware.
¤ In addition to simply existing, also must have the ability to gather

the information they provide.
¤ Good news! Every major vendor provides access to sensors:

¥ Commonly accessed through low-level API, but can also be a daemon
exposing a pseudo-file on virtual file system (Intel Xeon Phi) or direct
access to registers (Intel processors).

¤ Unfortunately, no uniform way to access data across systems.
¤ Location of sensors determines what data is accessible.

¥ Current hardware has variety here as well.
¥ As such, not possible to gather exact same type of data between

platforms.

4

5

IBM Blue Gene/Q

6

IBM Blue Gene/Q - Environmental Database
¤ Blue Gene systems have environmental monitoring capabilities that

periodically sample and gather environmental data from various
sensors.

¤ This information along with timestamp and location is stored in IBM
DB2 relational database—commonly referred to as the
environmental database.

¤ Sensors are found in service cards, node boards, compute nodes,
link chips, bulk power modules (BPMs), and the coolant
environment.

¤ Depending on sensor, can be temperature, coolant flow and
pressure, fan speed, voltage, and current.

¤ Collected at relatively long polling intervals (about 4 minutes on
average).

7

IBM Blue Gene/Q - Environmental Database

8

Time

21:58:55.328
21:58:55.322
21:53:53.069
21:53:53.063
21:48:50.211
21:48:50.203
21:43:47.884
21:38:46.009
21:38:45.000
21:33:43.088
21:33:43.082
21:28:40.508
21:28:40.502
21:23:38.440
21:23:38.434
21:18:36.189
21:13:32.993
21:13:32.982
21:08:30.536
21:08:30.529
21:03:27.619
21:03:27.611
20:58:25.034
20:58:25.027

In
pu

t P
ow

er
 (W

at
ts

)
1800

1600

1400

1200

1000

800

IBM Blue Gene/Q - EMON
¤ In addition to environmental database, IBM also provides interfaces

in form of environmental monitoring API called EMON.
¤ Allows access to power consumption data from code running on

compute nodes at much faster rate than environmental database.
¤ Data from EMON is total power from the oldest generation of power

data.
¤ Collection is done at the node card (32 compute nodes) level for

each of 7 “domains”.

9

IBM Blue Gene/Q - EMON

10

Seconds
150010005000

M
ea

n
Po

w
er

 (W
at

ts
)

2,200

2,000

1,800

1,600

1,400

1,200

1,000

800

600

400

200

0

SRAM
PCI Express
Optics
HSS Network
Link Chip Core
DRAM
Chip Core

Node Card
Power

Domain

Intel RAPL
¤ As of the Sandy Bridge architecture, Intel has provided the “Running

Average Power Limit” (RAPL) interface.
¤ Originally designed to provide a way to keep processors inside of a

given power limit over a sliding window of time, but can also be
used to calculate power consumption over time.

¤ Circuitry of chip is capable of providing estimated energy
consumption based on hardware counters.

¤ Intel model-specific registers (MSRs) are implemented within x86
instruction sets to allow for access and modification of parameters.

11

Domain Descrip0on
Package	(PKG) Whole	CPU	package.
Power	Plane	0	(PP0) Processor	cores.

Power	Plane	1	(PP1) The	power	plane	of	a	specific	device	in	the	encore	(such	as	an	
integrated	GPU-not	useful	in	server	plaWorms).

DRAM Sum	of	socket’s	DIMM	power(s).

Intel RAPL
¤ Access to MSRs requires elevated access to the hardware, typically

something only the kernel can do.
¤ As a result, a kernel driver is necessary to access these registers in

this way.
¥ As of Linux 3.14 these kernel drivers have been included and are

accessible via the perf_event (perf) interface.
¤ Short of having a supported kernel, only way to access is to use

Linux MSR driver which exports MSR access to userspace.
¤ Once built and loaded, it creases a character device for each logical

processor under /dev/cpu/*/msr.
¤ Number of limitations:

¥ Collected metrics are for whole socket. Therefore, not possible to
collected data for individual cores.

¥ DRAM memory measurements do not distinguish between channels.

12

Intel RAPL
¤ In terms of accuracy:

¥ Generally concluded that updates are not accurate enough for short-
term energy measurements with updates happening within the range of
±50,000 cycles.

¥ However, few updates deviate beyond 100,000 cycles making RAPL
interface relatively accurate for data collection at about 60ms.

¥ Registers can “overfill” if they are not read frequently enough, so a
sampling of more than about 60 seconds will result in erroneous data.

13

Intel RAPL

14

Time (Seconds)
706050403020100

Po
w

er
 (W

at
ts

)
60

50

40

30

20

10

0

NVIDIA Management Library
¤ A C-based API which allows for the monitoring and configuration of

NVIDIA GPUs.
¤ Only supported on Kepler and newer architecture (e.g., K20, K40).
¤ Only one call for power data collection:
nvmlDeviceGetPowerUsage().

¤ Reported accuracy by NVIDIA is ±5W with an update time of about
60ms.

¤ Power consumption is for entire board including memory.

15

NVIDIA Management Library

16

Time Since Start
12.510.07.55.02.5.0

Po
w

er
 (W

at
ts

)

56.00

54.00

52.00

50.00

48.00

46.00

44.00

Time (Seconds)
100806040200

Po
w

er
 (W

at
ts

)

150

125

100

75

50

Tem
perature (D

egrees C)

65

60

55

50

45

40

NOOP	Workload Vector	Add	Workload

Intel Xeon Phi
¤ Two ways to collect data on host side:

¥ In-band - uses symmetric communication interface (SCIF). Enables
communication between host and device as well as device to device.
Primary goal to provide uniform API for all communication across PCI
Express buses. All drivers expose same interface on host and Xeon Phi,
allows for software to execute where most appropriate.

¥ Out-of-band - starts with same capabilities in coprocessor, but then sends
information to Xeon Phi’s System Management Controller (SMC). Then
responds to queries from platform’s Baseboard Management Controller
(BMC) using intelligent platform management bus (IPMB) protocol.

¤ MICRAS daemon is a tool which runs on both the host and device
platforms.
¥ On host, allows for the configuration of the device, logging of errors, and

other common administrative utilities.
¥ On device, this daemon exposes access to environmental data through

pseudo-files mounted on a virtual file system.
¥ To read data, just read the file and parse data.

17

Intel Xeon Phi

18

IOCTLs

Host SCIF Driver

Sysfs

Coprocessor SCIF Driver

Host Coprocessor

IOCTLs

PCIe Bus

MIC Access SDK

Control Panel

System Management Agent

User SCIF

ODM Tools

User SCIF

SysMgmt SCIF Interface

Monitoring
Thread

Host RAS Agent

MCA
HandlerApplication

Application

“in-band” (1)
“out-of-band” (2)
MICRAS (3)

(1)
(2)

(3)

(1,2)

Intel Xeon Phi

19

API/Daemon
DaemonAPI

To
ta

l P
ow

er
 C

on
su

m
pt

io
n

119

117

115

113

111

Intel Xeon Phi - Tradeoffs in Approaches
¤ While slight, there is a significant difference between SysMgmt API

and MICRAS daemon.
¥ When API call is made to the lower-level library to gather data, it must

travel across the SCIF to the device where user libraries call kernel
functions to access registers containing data.

¥ Code that wasn’t already execution on device before API call must run,
collect, and return, hence power difference.

¤ Data collected by daemon is only accessible by the portion of code
running on the device.
¥ Results in unavoidable overhead associated with any data collection as

any collection performed must be down during the execution fo the
application which is running.

20

Intel Xeon Phi

21

Time Since Start (Seconds)
250200150100500

Su
m

 P
ow

er
 (W

at
ts

)
25,000

20,000

15,000

10,000

5,000

0

MonEQ
¤ Wanting to address limitations in other tools as well as in data

collection mechanisms, we designed and developed MonEQ.
¤ In default mode, MonEQ pulls data from selected environmental

collection interface at quickest polling interval possible for the
given hardware.

¤ Registers to receive SIGALRM signal at polling interval. When
delivered, MonEQ calls down to the appropriate interface and
records data.

¤ Extended in this work to access data from all hardware mentioned,
just link with the appropriate library.

¤ Supports more complex features like tagging specific areas of code.

22

Simple MonEQ Example

23

int status, myrank, numtasks;

status = MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

/* Setup Power */
status = MonEQ_Initialize();

/* User code */

/* Finalize Power */
status = MonEQ_Finalize();

MPI_Finalize();	

MonEQ Overhead
¤ Designed to be robust without weighing down application.
¤ In general, overhead is dictated by number of devices being

profiled.
¥ Most expensive operations performed when the application isn’t running

(i.e., before and after execution).
¤ Memory overhead is essentially constant with respect to scale.

24

32	Nodes 512	Nodes 1024	Nodes

Applica0on	Run0me 202.78 202.73 202.74

Ini0aliza0on 0.0027 0.0032 0.0033

Finalize 0.1510 0.1550 0.3347

Collec0on 0.3871 0.3871 0.3871

Total 0.5409 0.5455 0.7251

Conclusions
¤ In many cases, the same environmental data isn’t available between

two different hardware platforms.
¤ Methods for collection can vary substantially.
¤ Only data point in common for all hardware discussed is total power.
¤ Single greatest issue which is practically impossible to eliminate is

the collection overhead.
¤ Number of (simple) improvements can be made:

¥ Stated limitations of data and the collection of data.
¥ If data is to be used to compare platforms, unification is necessary.

25

26

QuesAons?

